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Predicting traffic accidents can help traffic management departments respond to sudden traffic situations

promptly, improve drivers’ vigilance, and reduce losses caused by traffic accidents. However, the causality of

traffic accidents is complex and difficult to analyze. Most existing traffic accident prediction methods do not

consider the dynamic spatio-temporal correlation of traffic data, which leads to unsatisfactory prediction accu-

racy. To address this issue, we propose a multi-task learning framework (TAP) based on the Spatio-temporal

Variational Graph Auto-Encoders (ST-VGAE) for traffic accident profiling. We firstly capture the dynamic

spatio-temporal correlation of traffic conditions through a spatio-temporal graph convolutional encoder and

embed it as a low-latitude vector. Then, we use a multi-task learning scheme to combine external factors to

generate the traffic accident profiling. Furthermore, we propose a traffic accident profiling application frame-

work based on edge computing. This method increases the speed of calculation by offloading the calculation

of traffic accident profiling to edge nodes. Finally, the experimental results on real datasets demonstrate that

TAP outperforms other state-of-the-art baselines.
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1 INTRODUCTION

According to the World Health Organization (WHO, 2017) report, about 1.3 million people die

every year in the traffic accident, and it on highways often cause more serious injuries. Statistics

from the U.S. National Highway Traffic Safety Administration (NHTSA), the economic losses

caused by motor vehicle crashes about 242 billion dollars, which is equivalent to 1.6% of the U.S.

actual gross domestic product (GDP) in 2010. Adler et al. [1] proved that the continuous impact

of accidents every minute causes a loss of 57 euros, which will cause higher losses on roads with

high road occupancy. Traffic accident prediction can help people forecast the dangerous state of

the road, thereby improve road safety, reduce economic losses caused by accidents, and reduce the

number of fatal accidents.

The causes of accidents are diverse and the causality is complex. On one hand, some studies are

devoted to mining the correlation between the related factors of traffic accidents (such as weather,

driver attributes, traffic features, driving behavior, vehicle type, etc.) and the type or severity of traf-

fic accidents [15, 30, 44]. The limitation of these methods is that they cannot directly predict traffic

accidents. On the other hand, some studies are devoted to predicting when regional accidents will

occur and predicting the number of accidents. The former regards accidents as a classification prob-

lem, and the latter regards accidents as a regression problem. Early, based on traditional machine

learning methods such as Regression models [4], Bayesian networks [48], and Decision Trees

(DTs) [29] were applied to traffic accident prediction. With the availability of traffic data and the

development of deep learning methods such as long short-term memory (LSTM) network [36],

convolutional neural network (CNN) [33], Convolutional LSTM (ConvLSTM) Network [49],

and graph neural network [51] has attracted more and more attention. These methods do not have

comprehensive traffic accident predictions, resulting in unsatisfactory practical applicability.

As we know, the accident is a special traffic event. Traffic data is not only temporal-related but

also spatial-related. The spatio-temporal distribution of traffic flow results in different traffic states

such as congestion and traffic accident [14]. Previous methods usually model the traffic network as

grids or matrix cells [6, 32, 44]. These methods ignore the spatial heterogeneity of traffic. The Graph

structure is a powerful mathematic model that can fit the traffic and is widely used in the field of

traffic flow prediction. However, due to the complexity of traffic accidents, few studies are devoted

to the analysis and prediction of accidents on the graph. Therefore, there is an urgent need for a

traffic accident prediction method that captures the temporal and spatial dynamics of traffic data.

In response to the above problems, in our article, we proposed the spatio-temporal graph repre-

sentation framework, which contains four layers, to generate the traffic accident profiling of the

future time slice. Firstly, we collect and preprocess historical traffic data and historical traffic ac-

cident data of the area. Then, we construct a traffic spatio-temporal graph network based on the

regional traffic network and historical traffic data. After that, we use these data as the input of the

model to learn the spatio-temporal correlation of traffic data and embed it as the low-dimensional

vector-traffic state. Finally, we generate traffic accident profiling through a multi-task scheme. In

addition, we designed a traffic accident profiling application framework based on the Internet of

Things (IoT). The experimental results under real traffic data show that our method has better

performance than traditional methods and deep learning methods. In summary, our contributions

are as follows:

— We propose a novel multi-task spatio-temporal graph representation learning framework

(TAP) to generate the traffic accident profiling. In general, we embed traffic data as the traffic

state, and then generate traffic accident profiling through a multi-task scheme.

— A novel Spatio-temporal Variational Graph Auto-Encoders (ST-VGAE) is designed to

model the dynamic spatio-temporal correlation of traffic data. The spatio-temporal graph
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convolution block in ST-VGAE captures the spatio-temporal correlation in the traffic data,

and then obtains the traffic state through the encoder, and reduces the calculation time of

the sub-tasks model.

— We design a framework to generate the traffic accident profiling and distribute it to drivers

and traffic management departments through the IoT and edge computing, which provides

a more feasible and appropriate method for studying traffic accidents in reality.

— We evaluate our method under real data, and the experimental results prove that our method

is better than existing methods.

In the following, we first introduce the related work about traffic accident prediction and graph

representation learning in Section 2. Then, we present some preliminary concepts and an overview

of our framework TAP in Section 3. Furthermore, we introduce our method in detail in Section 4.

Section 5 introduces our experimental setup and verifies the effectiveness of the proposed frame-

work. Finally, we conclude our article in Section 6.

2 RELATED WORK

In addition to human factors such as drunkenness and drug abuse, we believe that the causes of

accidents are mainly affected by two aspects, (1) spatial influence, that is, by the traffic of adjacent

roads, and (2) temporal influence, that is, by the traffic of the period before the accident influences.

In other words, we can analyze the causes of accidents by analyzing the spatial and temporal

correlation of accident traffic data. Li et al. [26] first introduced the structure of graph to the field

of transportation. Because most of the traffic network is a natural graph structure, recent work

has shown that the GNN-based architecture can achieve better performance than the traditional

CNN-based architecture, especially in terms of spatial correlation [45]. Hamilton et al. [12] pointed

out that the central problem of graph representation learning is to find a way to integrate graph

structure information into downstream models. Therefore, we review the related work of traffic

accident prediction and graph representation learning.

2.1 Traffic Accident Prediction

For traffic accident prediction, we divide it into two categories:

Statistics-based methods. A traffic accident is usually regarded as a random event, containing

various uncertain factors, and these factors are sometimes even conflicting. Therefore, use statisti-

cal models, such as Poisson or Negative binomial regression models to predict accidents. Most of

these models rely on prior knowledge. Chang et al. [4] used a non-parametric tree-based model

Classification and Regression Tree (CART) to establish the empirical relationship between

traffic accidents and highway geometric variables, traffic features and environmental factors. Yu

et al. [48] proposed a summary and analysis of single-vehicle accidents and multi-vehicle acci-

dents were carried out. In the summary analysis, the hierarchical Poisson model and the Bayesian

binary Poisson lognormal model and related random effects are used to simulate the collapse. In

the classification analysis, real-time traffic data, weather information, and geometric features are

combined, and a multi-level Bayesian logistic regression (LR) model is used to evaluate the real-

time collision risk. Lin et al. [29] proposed a variable selection algorithm based on an FP tree for

real-time traffic accident risk prediction in the context of traffic big data. Hu et al. [16] proposed a

traffic outlier events detection method with missing data. A three-way tensor is used to encode the

spatio-temporal relationships of traffic, and tensor decomposition and tensor completion models

are established through the alternate direction method of multipliers (ADMM) the framework

to detect traffic events and recover missing traffic data.

Deep learning-based methods. Due to the availability of traffic data and the effectiveness of

deep learning algorithms, some deep learning methods have recently tried to solve the problem of
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accident prediction. Ren et al. [36] pointed out the temporal correlation features of traffic accidents,

and predicted the accident based on LSTM combined with spatio-temporal data. Najjar et al. [33]

used CNNs to learn from original satellite images to predict city-level road safety maps. Yuan et al.

[49] believed that previous studies either ignored temporal information, or only used data from a

small and homogeneous study area, and did not deal with the spatial heterogeneity and temporal

correlation of traffic at the same time, and then proposed Hetero-ConvLSTM model, through the

method of dividing regions, ConvLSTM uses a large amount of collected spatio-temporal hetero-

geneous data (such as weather, environment, road conditions, and traffic volume) to predict traffic

accidents in different regions. Zhou et al. [51] proposed a framework RiskOracle that improves the

prediction granularity to the minute level. The multi-task graph neural network (DTGN) captures

the real-time changes of the traffic state and the high-level relationship between the dynamic par-

titions and the accident to predict the accident. In view of the sparse traffic accident data, which

is easily affected by factors such as weather and POI, the complex spatio-temporal relationship of

traffic accidents in different regions are difficult to model, the influence of factors such as weather

and POI on the occurrence of traffic accidents. Most methods divide cities into grids to model, but

this method ignores the spatial spread of traffic, resulting in unsatisfactory predictions.

2.2 Graph Representation Learning

In recent years, with the rise of graph structure in various fields (transportation, chemistry, social

science, etc.), the core problem of graph representation learning is to encode the high-latitude,

non-Euclidean information of the graph structure into the feature vector and as much as possible

the topology information of the graph. The graph representation learning can be divided into two

categories:

Node embeddings-based method. Perozzi et al. [35] proposed a method for learning the latent

representation of vertices in the network (DeepWalk), which uses random walk to sample nodes

to obtain local information. Tang et al. [39] proposed a network embedding model (LINE), which

is designed to retain first- and second-order neighboring nodes as adjacent nodes and sample the

nodes. However, these methods usually only perform a single representation of the graph structure

and lack the representation of node features.

Graph neural networks-based method. Kipf et al. [22] based on CNN, through the first-order

approximation of graph convolution, a semi-supervised classification method (GCN) is proposed

on graph structure data to learn the representation of local graph structure and node features.

Hamilton et al. [11] generated embeddings by designing a learning function (GraphSAGE) to sam-

ple and aggregate the features of the local neighbors of a node, without requiring all nodes to

exist.

There have been some studies that have combined graph representation learning with trans-

portation. Wang et al. [42] by modeling the driving state sequence into a driving state transition

diagram, they proposed a framework based on peer-to-peer and time-aware representation

learning (PTARL) to describe driving behaviors, based on which they scored driving behaviors

and dangerous areas perform testing. Guo et al. [10] constructed the road network into a series of

spatio-temporal graph sequences according to three temporal attributes (recent dependency, daily

cycle dependency, and weekly cycle dependency), and captured by the spatio-temporal graph con-

volution method of the attention mechanism. The temporal and spatial correlation of traffic status

changes, predict traffic. Song et al. [38] connected a single spatial graph of adjacent timesteps into

a localized spatio-temporal graph and proposed a spatio-temporal synchronization graph convolu-

tion network to predict spatio-temporal traffic data. Shen et al. [37] combined taxi trajectory data,

road network data, and POI data to propose a data-driven business district discovery framework,

which uses GCNs to aggregate human mobility features based on geographic similarity.
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3 OVERVIEW

3.1 Preliminary

This subsection briefly introduces the definition of traffic accident profiling problems.

Definition 3.1 (Congestion Index). For traffic data, it is difficult to directly obtain traffic congestion

situations. The congestion index (CI) expresses the traffic congestion in an exponential way.

Definition 3.2 (Rush Hour). Rush hour is a period of time when there is a large amount of traffic

in a day, and it is an important manifestation of traffic periodicity, including morning rush hour

and evening rush hour.

Definition 3.3 (Weather Event). Extreme weather conditions have a significant influence on traffic.

Weather event is a two-dimensional array (type, severity), including the type and severity of the

weather event.

Definition 3.4 (Traffic Accident Warning). Traffic accident warning is a scalar used to warn the

probability of traffic accidents in the future.

Definition 3.5 (Traffic Accident Classification). We classify accidents into four categories accord-

ing to the dissipating time: (1) minor accidents, (2) general accidents, (3) serious accidents, and

(4) major accidents.

Definition 3.6 (Traffic Accident Profiling). Traffic accident profiling is an indicator to measure road

safety in the future and is a two-dimensional array, which including the traffic accident warning

and the traffic accident classification.

Problem Definition. We can define the problem as Given the X , data recorded on the time

period T by all nodes on the traffic network, the purpose is to find a mapping function: X → Z ,

output a temporal-varying embedding vector Z , which we call traffic state. We regard this series

of problems as a spatio-temporal graph representation learning task.

3.2 Framework

We propose a framework that uses spatio-temporal data to generate traffic accident profiling. It

is mainly divided into five steps, data preparation, feature extraction, modeling spatio-temporal

correlation, traffic accident profiling, and the application framework. Firstly, we collect and pre-

process historical traffic data and historical traffic accident data provided by PeMS. Then, build a

traffic spatio-temporal graph network based on the historical traffic accident data deployed by sen-

sors in the traffic road network. After that, through ST-VGAE modeling dynamic spatio-temporal

correlation to get the traffic state. Then, we generate traffic accident profiling through a multi-task

scheme. Finally, we used an application framework based on edge computing to push the profiling

information. More details are shown in Figure 1.

4 METHODOLOGY

In this section, we elaborate feature extraction, spatio-temporal graph representation learning, and

application framework based on edge computing.

4.1 Data Preparation

To generate the traffic accident profiling, in this study, large-scale data related to traffic accidents

were collected from Caltrans Performance Measurement System (PeMS). According to Chen

et al. [7] PeMS is a centralized repository of all Caltrans real-time traffic data. It collects highway

traffic data by collecting traffic data every 30 seconds, collecting traffic data every 5 minutes, and

collecting Incident data from California Highway Patrol.
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Fig. 1. Overview of the proposed framework.

We selected two areas, PeMS District4 (PeMSD4) and PeMS District8 (PeMSD8) as the research

area. The traffic data and accident data are provided by PeMS, and the data are cleaned to remove

some dirty and wrong data to ensure the integrity of the data. Besides, we add weather, the CI,

and whether it is a Rush Hour to evaluate traffic. In this article, the calculation formula of the CI

is defined as

CI =
⎧⎪⎨⎪⎩

speedlimit−acutalspeed

speedlimit
when CI > 0

0 when CI ≤ 0
(1)

where speedlimit is 70 (mph), acutalspeed is the current speed, Rush Hour is defined as

Rush Hour =

{
0 when ta in P
1 when ta not in P

(2)

where ta is the time when the accidenta occurred, and P represents morning rush hour and evening

rush hour. In this article, it refers to 8 am to 9 am and 5 pm to 7 pm. Then, we undersample the

accident data to balance the positive and negative samples. The process of data preparation is

shown in Figure 2.

4.2 Feature Extraction

Traffic Road Network. We define the traffic road network as an undirected graph structure,G =
(V ,E,A). |V | = N is the total number of nodes in the graph. As shown in Figure 3, we regard sensors

as nodes in the graph. If the road lacks sensors or the sensors are faulty, we use the data of adjacent

sensors for interpolation. E are the edges in the graph, representing the connections between

nodes (sensors). A ∈ �N×N is the adjacency matrix that contains the topological information of

the transportation network, Ai, j = 1 means the node i and node j are connected, and 0 means

disconnected.

Traffic Data. Each accident contains traffic features (i .e ., speed,occupancy, f low ) and ac-

cident data (i .e ., time, location,description,duration). The sensors collect traffic data of the

ACM Transactions on Knowledge Discovery from Data, Vol. 17, No. 4, Article 56. Publication date: February 2023.
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Fig. 2. Data preparation process.

Fig. 3. The graph topology structure is constructed by traffic network sensors. (a) visualize the distribution

of sensors in the traffic road network, (b) construct a graph by sensors. The connection of nodes represents

the connection of roads, and what we construct is an undirected graph. If the road lacks sensors, or the

sensors are faulty, we use the data of neighboring sensors for interpolation.

current state at regular intervals of time, including traffic data (i .e ., speed,occupancy, f low ). X =
(X1,X2, . . . ,XT ) ∈ �N×F×T is all the features under the timeT period. x t

n is node i features at time

t . X t = (x t
1 ,x

t
2 , . . . x

t
n ) ∈ �N×T represents the features of all nodes at the time t . We collect the

features of each accident two hours before the occurrence for research, that is, T = 24.

4.3 Modeling Spatio-Temporal Correlation

Some existing works have achieved good performance in modeling traffic spatio-temporal corre-

lation. For example, Wang et al. [41] model periodic behavior in crowd flow by taking the devi-

ation between previous and future periods. A lightweight spatial channel augmentation encoder

is proposed, which augments standard CNNs to capture global spatial correlations and temporal

dependencies to build more robust region representations. This approach makes the network more

efficient and robust in long-term predictions. Liang et al. [28] use SENet to perform a local feature

extraction module to learn representations for each region, and then combine global and sampled

features to model spatio-temporal correlations in traffic. Finally, region-specific predictors based

ACM Transactions on Knowledge Discovery from Data, Vol. 17, No. 4, Article 56. Publication date: February 2023.
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on tensor decomposition provide customized predictions for each region. This method excels on

crowd flow analysis tasks. Huang et al. [17] encode latent semantic signals into regional represen-

tations and tracks the dynamic interdependencies between traffic accident data and external fac-

tors of urban events (such as POIs, emergencies, etc.) through a hierarchical fusion network. This

method excels at modeling complex sequential transitions of traffic accidents occurrences. Huang

et al. [18] divide the city into grids to model the spatio-temporal correlation of traffic accidents in

terms of temporal, space, and event categories. An attention-based model is proposed to fuse per-

view information and learn feature latent representations via LSTM to model dynamic patterns of

city-wide anomalous events from the perspective of spatio-temporal classification. Liang et al. [27]

divide cities into grids to model global spatial dependencies. Then, the grid space is transformed

into the region space and the region correlations are inferred globally via message passing. Finally,

the features are projected back into grid space and global perceptual features are obtained. This

method can obtain the optimal model effect with fewer parameters in traffic flow prediction. Wang

et al. [43] divide cities into coarse-grained and fine-grained grids, using channel-level CNNs and

multi-view GCNs to capture local geographic dependencies and global semantic dependencies at

different granularities. Furthermore, a feature fusion module is proposed to simulate the influence

of external factors such as weather and points of interest on traffic accidents. This method more

effectively predicts both fine-grained and coarse-grained citywide traffic accident risk. Inspired by

the above papers, this article further considers the impact of dynamic spatio-temporal correlation

in traffic flow on traffic accident prediction and proposes ST-VGAE.

ST-VGAE. The AutoEncoder is an unsupervised learning neural network model, which can

learn the embedding vector of the input data (encode) and reconstruct the embedding vector into

the original input data (decode). Variational Graph Auto-Encoders are based on AutoEncoders

and learn the interpretable potential embedding of undirected graph structures from the perspec-

tive of data distribution through GCN [20, 21]. This article proposes a novel Variational Graph

Auto-Encoders that uses spatio-temporal graph convolution blocks instead of GCN to represent

complex traffic information. As shown in Figure 4, we stack multiple spatio-temporal convolution

blocks, and each module includes a layer of spatial convolution and a layer of temporal convolu-

tion. Specifically, we first use the GCN model to model the spatial relationship and aggregate the

traffic features in the spatial and then use the CNN model to model the temporal correlation and

aggregate the traffic features in the time series. In addition, we added a residual network to each

spatio-temporal convolution block to prevent overfitting.

Encoder. We collect 2 hours of data before accidents for embedding [32]. Given the adjacency

matrixA and the feature matrixX , the spatio-temporal convolution block constructs a filter on the

graph, captures node features through edge features, models the spatial correlation in traffic, and

obtains a new embedding of the graph. To reduce the computational complexity, the Chebyshev

polynomial approximate graph convolution can be rewritten as [13]:

дθ ∗ x =
K∑

k=0

θkTk (L̃)x , (3)

L̃ =
2L

λmax
− I , (4)

where дθ is the convolution kernel, θ is a vector of polynomial coefficients, ∗ is the graph con-

volution operation, L = I − D−
1
2AD−

1
2 is the identity matrix, D = ΣjAi j Representation degree

matrix, Tk is the Chebyshev polynomials of order k . After graph convolution models the spatial

correlation of traffic by aggregating the neighboring information of each node of the graph, we

use standard convolution to model the temporal correlation in traffic by aggregating features on

ACM Transactions on Knowledge Discovery from Data, Vol. 17, No. 4, Article 56. Publication date: February 2023.
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Fig. 4. The architecture of ST-VGAE.

adjacent time slices. The output of the first spatio-temporal convolution block can be defined as

hl = ReLU(Φ ∗ (ReLU(wT · дθ ∗ x ) + b)), (5)

where hl is the output of the l spatio-temporal convolution block, Φ is the standard convolution

kernel parameters, and Φ(∗) is the standard convolution operation. Inspired by the work of [10],

we designed a two-layer spatio-temporal graph convolution block. The second layer can be written

as

hl+1 = ReLU(Φ ∗ (ReLU(wT · дθ ∗ hl ) + b)). (6)

We use the spatio-temporal graph convolution block to model the dynamic spatio-temporal

correlation in traffic, and fit the distribution of the aggregated data through graph convolution,

which could be denoted as

μ = GCNu (X ,A), (7)

logσ = GCNσ (X ,A), (8)

where μ is the mean value of the distribution and σ is the variance of the distribution. The traffic

state Z can be described as below:

Z ∼ N (μ,σ 2), (9)

the encoder can also be denoted as follows:

q(Z |X ,A) =
N∏

i=1

q(zi |X ,A), (10)

where q(zi |X ,A) = N (zi |μi ,diaд(σ 2)).
Decoder. The decoder is defined as the inner product of the embedding vector and outputs the

reconstructed adjacency matrix as shown below:

Â = Siдmoid (ZZT ), (11)

ACM Transactions on Knowledge Discovery from Data, Vol. 17, No. 4, Article 56. Publication date: February 2023.



56:10 Z. Liu et al.

where ZT is the transposed matrix of Z , Â is the adjacency matrix reconstructed by the decoder.

The decoder can also be defined as

p (A|Z ) =
N∏

i=1

N∏
j=1

p (Ai, j |zi , zj ), (12)

where p (Ai, j = 1|zi , zj ) = Siдmoid (ZZT ). The loss function of ST-VGAE is divided into two parts.

The first part is to calculate the binary cross entropy between the original adjacency matrix A and

the reconstructed adjacency matrix Â. The second part is to calculate the KL-divergence between

q(Z |X ,A) and p (Z ), as shown below:

Lvдae = Eq (Z |X ,A)[loдp (A|Z )] − KL[q(Z |X ,A) | |p (Z )]. (13)

Traffic Inference with Normalizing Flows. The posterior approximation of variational in-

ference is usually a simple Gaussian distribution, which is difficult to fit complex traffic flow

conditions. Normalizing flows push a simple density through a series of transformations to pro-

duce a richer multi-modal distribution-like a fluid flowing through a set of tubes [34]. Inspired by

[34, 40, 50], to improve the posterior distribution in ST-VGAE, we introduced standardization to

transform the simple Gaussian distribution into a more accurate traffic distribution and proposed

TAP*, which is based on the improved ST-VGAE*.

The target vector zk is a latent vector z0 sampled from a simple distribution such as the Gaussian

distribution, which is obtained by a series of k changes fk :

zk = fk ( fk−1 (· · · f1 (z0))). (14)

f (·) = fk ◦ fk−1◦ · · ·◦ f1 (z0) is called flow, which is composed of a series of invertible functions and

differentiable functions, z0 = f −1 (zk ), the process of forming the target distribution qk is called

normalized flow. Given a set of variables z = [z0 · · · zn], the probability distribution of random

variable zn is

qk (zn ) = q0 (z0)
�����det

dz0

dzn

����� = q0 (z0)
�����det
∂ f −1 (zn )

∂zn

����� = q0 (z0)
k∏

k=0

�����det
∂ f −1 (zk )

∂zk

�����
−1

. (15)

z0 = f −1 (zk ) brings into the formula, det
∂f −1 (zn )

∂zn

= Jf −1 (zn ) is the Jacobian determinant, because

of the nature of the determinant, det Jf −1 (zn ) = det Jf (z0)−1. Inspired by [34], we use plane flow

parameterization to approximate the posterior qk :

fi (z) = z + uih(wT
i z + bi ), (16)

whereui ,wi ∈ Rd is the learnable parameter,d is the characteristic dimension of the characterizing

vector, and h(·) is the smooth element-wise non-linear activation function tanh. Therefore, the

Jacobian determinant is expressed as

�����det
∂ f

∂z

����� =
����det(I + u

[
h′(wTz + b)w

]T���� =
���1 + uTh′(wTz + b)w ��� , (17)

where h′ is the derivative of h and can be calculated inO (d ) time complexity. We modify the ELBO

of variational inference as

Lvaдe∗ = Eq0 (z0 )[lnq0 (z0)] − Eq0 (z0 )[logp (A, zk )] − Eq0 (z0 )

⎡⎢⎢⎢⎢⎣
K∑

k=1

ln
���1 + uTh′(wTz + b)w ���

⎤⎥⎥⎥⎥⎦
. (18)

Algorithm 1 detailed introduces Modeling Spatio-Temporal correlation process.
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ALGORITHM 1: Modeling Spatio-Temporal Correlation

Input: Adjacency matrix A, Features matrix X ;

Output: Traffic state Z ;

Initialize the GCNs and CNNs parameters

Initialize Z = ∅, Â = ∅
Initialize μ = ∅, σ = ∅
for {A,X } in {Traffic Data} do

initialize spatio_conv and temporal_conv

initialize hl = X
for block in {spatio − temporal blocks} do

spatio_conv = GCNs(A, spatio_conv)

temporal_conv = CNNs(hl )

hl = ResNet(temporal_conv , X )

end

μ = GCNu (X ,A)
logσ = GCNσ (X ,A)

Z = N (μ,σ 2)
if TAP∗ then

update Z throuдh Normalizinд Flows .
end

Â = Sigmoid(ZZT )
end

4.4 Traffic Accident Profiling

User profiles are a typical application of feature engineering. Common features are extracted

through data mining and analysis of various types of data. The essence of user profiles is to

accurately describe any object. Drawing on the idea of user profiles, this article uses graph

representation learning, mining the hidden variables profiling of accidents in the road network,

and combining the displayed variables to construct accident profiling. Specifically, our profiling

includes the probability and level of accidents occurring in the future. Inspired by [25], we applied

the idea of cascade network to traffic accident profiling, and established the model structure shown

in Figure 5.

Traffic Accident Warning. As Chen et al. [8] said, it is difficult for us to directly predict

whether a traffic accident will occur, because the factors that affect traffic accidents are usually

related to people, such as driver distraction, driver drinking, or drug use, these factors often un-

observable and difficult to collect. Therefore, we try to predict the risk of an accident, that is, the

probability of an accident in the future (5 minutes, 30 minutes, 60 minutes, etc.). The method we

propose can learn the embedding of each accident, and predict the accident risk of the future time

slice. In this article, we collect the data of each accident two hours before the occurrence for re-

search, namely T = 24. In order to use the embedding vector for the traffic accident warning, we

designed a simple application-layer externally to learn the mapping of the embedding vector to

the accident risk. Essentially, the application layer is an FC layer. We input the embedding vec-

tor into the application layer to predict the traffic accident risk for the next time slice, as shown

below:

ỹ = Siдmoid (wT · Z + b), (19)

where ỹ is the probability of an accident. Therefore, the loss function of accident warning is

Losswarn = Lossvдae + λ1BCE (y, ỹ). (20)
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Fig. 5. The flow chart of multi-task scheme.

Traffic Accident Classification. Foreseeing the severity of the accident will help govern-

ment departments to take appropriate and timely measures. Therefore, we studied the severity

of the accident and the spatio-temporal dynamics of regional traffic to predict the severity of acci-

dents. Specifically, we first classify accidents into four categories according to the dissipating time:

(1) minor accidents, (2) general accidents, (3) serious accidents, and (4) major accidents. After get-

ting the traffic state through the model, we combine the current time CI and peak time indicators to

predict the accident level. Since the traffic accident classification does not update the main model

parameters through backpropagation, we added a layer of CNN to obtain a better model effect, as

shown below:

Ẑ = Z ⊕ Tdata , (21)

ŷ = So f tmax (Φ ∗ (wT · Ẑ + b)), (22)

where Ẑ is the vector after the traffic state and traffic data are aggregated, ⊕ is the aggregation

operation, ŷ is the accident level, Φ is the standard convolution kernel parameters, and Φ• is the

one-dimensional convolution operation. Therefore, the loss function of accident classification is

Lossclass = Lossvдae + λ2CE (y, ŷ). (23)

Algorithm 2 detailed introduces the traffic accident profiling process.

4.5 Application

One of the main causes of casualties in traffic accidents is the lack of timely rescue. Whether the

ambulance arrives at the scene in time determines the survival rate of the wounded [2]. Since

highways are generally far away from urban areas, it is very important to rescue accidents in ad-

vance [9]. In the past 20 years, the IoT technology has developed in many industries such as smart

transportation, smart industry, and smart health, making cities smarter and playing an important

role in traffic emergency management [24]. Edge computing offloads the storage, calculation, and

propagation that previously relied on cloud servers to Road Side Units (RSU) or Base Stations

(BS), reducing transmission delays through distributed parties and improving the real-time nature
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Fig. 6. The application of the traffic accident profiling.

ALGORITHM 2: Traffic Accident Profiling

Input: Traffic data Tdata ;

Output: Traffic state Z , the traffic accident profiling Tprof il inд ;

Initialize the GCNs and CNNs parameters

Initialize Twarn = ∅, Tclass = ∅

for {Z ,Tdata } in {Traffic Data} do
Twarn = FC(Z )

Back propagation update the parameters of ST-VGAE and FC layers.

if the label of embedding vector Tlabel == 1 then
Concentrate Z and Tdata as Variable
Variable = CNNs(Variable)

Tclass = FC(Variable)

Back propagation update the parameters of CNNs and FC layers.

end

end

Tprof il inд is composed of Twarn and Tclass .

of information [23]. Therefore, we propose a traffic accident profiling framework based on edge

computing as shown in Figure 6, which is inspired by [3] distributed architectures. Specifically,

we firstly collect and upload the traffic data (such as speed, capacity, occupancy, etc.) of the loop

detector through RSU/BS. On the cloud server, ST-VGAE embeds the traffic data and returns it, and

then RSU/BS obtains the traffic accident profiling through edge computing. Finally, we regularly

broadcast profiling information through the push message dissemination mechanism through IoT

[9]. If the level of the accident is relatively low, only notify the driver and the auto repair shop,

otherwise, send the relevant information about the location of the accident to the transportation

department, hospital, and auto repair shop.

Algorithm 3 detailed introduces the traffic accident profiling application based on the edge com-

puting process.

5 EXPERIMENTS

In this section, we first introduce the dataset and experimental settings. Then, we conducted ex-

tensive experiments to evaluate the effectiveness of our proposed framework.

5.1 Data Description

The experimental data includes traffic data, accident data, and weather data. More details are

shown in the Table 1.
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Table 1. Variable Description

Datasets Variables Desciption

Traffic Data

Traffic_Flow Sum of flows over the 5-minute period across all lanes.

Avg_Speed Average occupancy across all lanes over the 5-minute period.

Avg_ Occupancy Flow-weighted average speed over the 5-minute period across all lanes.

CongestionIndex Measure Lane congestion index.

Accident Data

Time Date and time of the accident.

Location The accident occurred place.

Description A brief description of the accident.

Rush_Hour Whether it is the rush hour in the morning or evening

Duration The duration time of the accident.

Weather Data
Type The type of an event.

Severity The severity of an event.

ALGORITHM 3: Application Based on Edge Computing

Initialize traffic data Tdata ;

Initialize embedding vector Z ,

Initialize the traffic accident profiling Tprof il inд ;

for timestamp = 1, 2, . . .N do
Initial traffic data s
RSU/BS collect Tdata aggregation it into s and send it to cloud

end

for s0, s1 . . . sn in s do
The cloud server calculate Z through ST-VGAE and return it

BS/RSU calculate Tprof il inд and push this information at a fixed frequency

end

Traffic Data. The traffic data comes from the two regions of California in America provided by

PeMS. PeMSD4 is the traffic data of the San Francisco Bay Area in January 2018. PeMSD8 is the

traffic data of San Bernardino Area from July to August 2016. PeMSD4 screened 307 sensors from

3,848 sensors on 29 roads, and PeMSD8 screened 170 sensors from 1,979 sensors on 8 roads [10].

In the experiment, the three features of total traffic flow, average speed, average occupancy, and

the CI indices were used.

Accident Data. The experiment used PeMS to provide accident data, including accident time,

duration, and so on. According to the time of the accident, we can calculate the rush hour index.

Among them, District 4 had a total of 2,551 accidents in January 2018. A total of 1,853 incidents

occurred in District 8 from July to August 2016. It is worth noting that we have cleaned the accident

data. We believe that accidents that last less than 15 minutes will hardly have a significant impact

on regional traffic, so we have eliminated this part of the data. In addition, when the time and

location of the two accidents are very close, we consider them to be cascading accidents and treat

them as the same positive sample.

Weather Data. We used the weather event datasets of PeMSD4 in January 2018 and PeMSD8

in July and August 2016 to study the impact of weather events on traffic accidents. Specifically,

the weather event dataset includes the type of weather event (such as fog, hail, rain, etc.) and the

severity of the weather event (light, moderate, severe) [31].
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5.2 Experiment Settings

Implementation Details. We first balance the data so that the positive and negative samples are

close to 1:1. Then, we divide the dataset into 60%, 20%, and 20%, respectively, as the training dataset,

validation dataset, and test dataset. We set the weight of the loss function λ1 = 0.8, λ2 = 0.8.

The TAP was optimized by backpropagation. For all models, we set the learning rate to 0.001

and apply the Adam optimizer to optimize the model. In the process of training accident warning,

we select the model with the smallest loss each time to save and update the ST-VGAE parameters

through back propagation. We do not update the ST-VGAE parameters when training the accident

classification auxiliary task and obtain better results through the CNN. In the test, we extract the

required data and sent it to the model, and output the traffic accident profiling through the main

task and auxiliary tasks. In addition, we use the label smoothing method to avoid the polarization

of accident warning results.

Evaluation Metrics. To be more intuitive and realistic, we set thresholds to classify traffic

accident warnings into positive and negative samples and use classification metrics to verify the

performance of the model. Inspired by [47], in this article, we choose the threshold as 0.5, if the

road with traffic accident warning higher than 0.5 is regarded as a positive sample, otherwise

it is regarded as a negative sample. We use Precision, Recall, F1-Score, Accurary@, AUC@ to

measure the performance of different methods. Among them, Precision, Recall, F1-Score are used

to measure the effect of accident warning sub-task, and Accuracy@, AUC@ are used to measure

accident classification sub-task:

— Precision. Calculate the proportion of correctly predicted samples among the positive

samples.

— Recall. Calculate the proportion of correct prediction positive samples in the total number

of positive samples.

— F1-Score. Fully measured precision and recall.

— Accuracy. Calculate the proportion of correct samples among various samples.

— AUC. Evaluating the performance of a classification model reflects the model’s ability to

distinguish between different categories.

Embedding feature dimension analysis. To investigate the effect of different embedding

dimensions on model performance, we conduct experiments on different embedding dimensions.

Figure 7(a) and (b) shows that in the areas of PeMSD4 and PeMSD8, the model performance of the

embedded dimension 4 in the accident warning subtask is better than other dimensions. It can be

seen from Figure 7(c) and (d) that in the traffic accident classification subtask, when the embedding

size is 1, PeMSD4 and PeMSD8 have the best performance, and when the embedding dimension is

16, the model performance is the worst. We believe that both too large and too small embedding

dimensions will cause model performance degradation. If the embedding size is too small, it will

be difficult for the model to completely preserve the traffic state. Models with too large embedding

dimensions will have redundant traffic states. Considering the model effect, parameter amount,

and training time, the embedding dimension of PeMSD4 is set to 4, and the embedding size of

PeMSD8 is set to 1.

Time-Slice length analysis. To study the effect of the length of time-slice on model perfor-

mance, we conducted experiments on the different lengths of time-slice. The scale of the abscissa

represents time-slices, and each time-slice is 5 minutes. As shown in Figure 8, as the length of time

increases, the effect of the model first increases and then decreases. Figure 8(a) and (b) shows that

in the accident warning subtask in the PeMSD4 area, the 30-minute model performance is higher

than other time-slice, and the worst result occurs in 60-minute, as is the PeMSD8 area. Figure 8(c)

and (d) shows PeMSD4 and PeMSD8, the 30-minute accident classification subtask is the best. We
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Fig. 7. Comparison of different dimensions.

Fig. 8. Comparison of different time-slice.

believe that too fine or too coarse time granularity will reduce the model’s ability to capture the

features of traffic conditions, resulting in a slight decrease in performance. Comprehensive consid-

eration, we set the accident profiling time-slice to 30-minute.

Weight Coefficient Analysis. We analyzed the impact of multi-task weight coefficients on

traffic accidents. We hope that traffic accident warning can be as accurate as possible, so subtask 1
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Fig. 9. Comparison of weight coefficient.

will update the model parameters of the main task through backpropagation, and we do not want

traffic accident classification to learn from the backpropagation interference model (we confirm in

the ablation study). So we only experiment with λ1, and the range of λ1 is between 0.1 and 1. As

shown in Figure 9, we can see that on our dataset, the model performs most stable when the λ1 is

0.8. This is because too large will cause the model to be more inclined to optimize sub-tasks, and

too small will lose the meaning of multi-task learning.

Weather Analysis. We analyzed the impact of weather on traffic accidents. As shown in

Figure 10, we can see that on the PeMSD4 dataset, the number of traffic accidents related to light

weather events is the largest, and the number of minor accidents is also the largest, while the num-

ber of accidents related to moderate and severe weather events is relatively small. This is because

the severe weather events themselves are sparse, and on the other hand, people try to reduce the

number of trips and be more cautious when encountering severe weather events. On the PeMSD8

dataset, the traffic data related to moderate weather events is the largest. This is because the num-

ber of moderate weather events (mainly fog) is far more than other weather events.

Analysis of experimental results

Baselines. We have studied several common machine learning algorithms (LR, Support Vector

Machines (SVM), DT) and some of the latest deep learning algorithms: LSTM, GRU [19], these

two models are processing time-series features. In terms of performance, it is a special RNN model.

ConvLSTM [49] adds convolution operation based on LSTM, which performs well in processing

time-series data. Stack Denoising Autoencoder (SDAE) [8] stacks multiple layers of Denoising

Autoencoder to show good performance in unsupervised learning. Spatio-Temporal Graph Con-

volutional Networks (STGCN) [46] performs well in traffic forecasting. A novel Stack Denoise

Convolutional Auto-Encoder (SDCAE) [5] to predict the risk of traffic accidents at the city
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Fig. 10. Comparison of weather condition.

level. The Deep Spatio-Temporal Graph Convolutional Network (DSTGCN) [47] proposes a

graph-based spatio-temporal method to predict the risk of future traffic accidents.

The classical methods (LR, SVM, DT) and some neural network methods (LSTM, GRU, ConvL-

STM, SDAE) cannot directly input the graph structure, so we do not retain the graph topology

and convert the graph into a sequence as the input of the model. We chose machine learning al-

gorithms because we wanted to use a small number of datasets to obtain excellent results. For a

fair comparison, we first initialize the baseline’s hyperparameters from the original literature and

then fine-tune them to achieve the best performance on our dataset. The detailed hyperparameter

settings for the baseline are as follows: For LSTM and GRU, we set the number of features in the

hidden state to 32 and the number of stacked layers to 2. For ConvLSTM, we set the kernel size

to 3 × 3, the number of LSTM layers stacked on each other to 2, and the number of features in

the hidden state to 16. For SDAE, we stack three denoising autoencoder layers and set the number

of units in each layer to 40, 40, 40. For SDCAE, we stack three DCAE blocks, each DCAE block

contains a convolutional layer with a kernel size of 2×1. The output channels of these three convo-

lutional layers are 6, 9, and 15, respectively. For STGCN, we stack two ST-Conv Blocks with 64, 16,

and 64 channels for three layers in each ST-Conv Block. For DSTGCN, we specify the number of

spatial and temporal convolution blocks as 3. Furthermore, we set the hidden dimensions of spatial,

temporal, and external features to 10, 20, and 10, respectively. For the hyperparameter tuning strat-

egy, we perform a grid search strategy (same as [46, 47]) to locate the best parameters in validation.

We do not use machine learning as a comparative experiment for accident classification, because

machine learning often trains multiple classifiers when processing multiple classifications, which

cannot be used in practice. The experimental results are shown in Tables 2 and 3.

From the results, it can be concluded as follows: First of all, the performance of the DT model

is better than other classic machine learning, because DT can better learn features related to traf-

fic accidents. Secondly, LSTM and GRU process time series information through recurrent neural

networks, and their performance is close. ConvLSTM uses a convolutional network on the basis of

a recurrent neural network, which shows better performance than LSTM and GRU. SDAE cannot

capture the temporal and spatial correlation in traffic, so the effect is similar to other deep learning

models. SDCAE uses convolution instead of full connection on SDAE to obtain better prediction re-

sults. DSTGCN not only considers spatial correlation but also considers the temporal correlation of

heterogeneous data, so it performs better than other baseline models. TAP* introduces a generative

flow-based method to construct a more accurate distribution of traffic data to solve the pain points

of variational inference, so it achieves the best results on the dataset. Thirdly, the deep learning

method achieves better performance than the traditional machine learning model, which proves
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Table 2. Comparison Results of Various Methods on PeMSD4

Model
PeMSD4

Recall Precision F1-Score Acc@ AUC@

LR 0.745 0.854 0.796 – –

SVM 0.719 0.811 0.761 – –

DT 0.785 0.842 0.813 – –

LSTM 0.875 0.913 0.894 0.47 0.594

GRU 0.924 0.871 0.894 0.475 0.616

ConvLSTM 0.919 0.913 0.915 0.493 0.558

SDAE 0.879 0.942 0.909 0.473 0.538

SDCAE 0.891 0.924 0.915 0.503 0.565

STGCN 0.895 0.902 0.899 0.592 0.471

DSTGCN 0.901 0.917 0.909 0.615 0.616

TAP (ours) 0.932 0.946 0.939 0.618 0.649

TAP* (ours) 0.929 0.954 0.941 0.600 0.640

Table 3. Comparison Results of Various Methods on PeMSD8

Model
PeMSD8

Recall Precision F1-Score Acc@ AUC@

LR 0.768 0.849 0.807 – –

SVM 0.706 0.906 0.793 – –

DT 0.806 0.818 0.812 – –

LSTM 0.878 0.896 0.887 0.644 0.581

GRU 0.895 0.902 0.898 0.649 0.608

ConvLSTM 0.871 0.942 0.902 0.634 0.472

SDAE 0.88 0.91 0.895 0.624 0.494

SDCAE 0.898 0.925 0.911 0.606 0.595

STGCN 0.797 0.929 0.858 0.615 0.616

DSTGCN 0.910 0.921 0.915 0.597 0.612

TAP (ours) 0.925 0.959 0.942 0.662 0.679

TAP* (ours) 0.931 0.957 0.944 0.724 0.621

that the deep learning model has a stronger ability to model complex traffic relations. Finally, we

can see that our framework is superior to other methods in most evaluation indicators. We be-

lieve that there are two main reasons: Firstly, we designed ST-VGAE to capture spatio-temporal

correlations through multiple spatio-temporal convolution blocks. Secondly, ST-VGAE uses an
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Table 4. Ablation Study on PeMSD4

Model
PeMSD4

Recall Precision F1-Score Acc@ AUC@ Time (s) Epoch

TAP 0.932 0.946 0.939 0.618 0.649 75 33

w/o weather 0.923 0.949 0.936 0.597 0.644 78 42

w/o ti 0.856 0.892 0.873 0.593 0.593 77 44

sub1 w/o bp 0.857 0.915 0.885 0.595 0.658 – –

sub2 w/o cnn – – – 0.597 0.622 – –

sub2 bp 0.913 0.945 0.929 0.594 0.637 112 57

Table 5. Ablation Study on PeMSD8

Model
PeMSD8

Recall Precision F1-Score Acc@ AUC@ Time (s) Epoch

TAP 0.932 0.946 0.939 0.618 0.649 79 38

w/o weather 0.903 0.953 0.927 0.634 0.566 75 39

w/o ti 0.905 0.921 0.912 0.615 0.515 73 41

sub1 w/o bp 0.822 0.885 0.852 0.624 0.508 – –

sub2 w/o cnn – – – 0.609 0.594 – –

sub2 bp 0.922 0.949 0.935 0.632 0.523 92 55

embedding layer to abstract the accident instead of directly using the data for downstream models,

which makes our model more robust.

Ablation Study. In order to study the influence of different features and components on the

model’s performance, we conduct ablation experiments on two datasets. We named the variants

of TAP as follows:

— w/o weather: This is TAP, which removes weather event features.

— w/o ti: This is TAP, which removes traffic indicators, including CI, peak hours, and weather

events.

— sub1 w/o bp: This is the subtask 1 traffic accident warning that does not update the main

task parameters through backpropagation.

— sub2 w/o cnn: This is subtask 2 traffic accident classification to remove the CNN model.

— sub2 bp: This is the subtask 2 traffic accident classification back propagation update the

main task ST-VGAE model parameters.

We repeat each experiment five times and report the average values of Recall, Precision, and F1-

Score of accident warning on the test dataset and the average values of Acc@ and AUC@ of acci-

dent classification in Tables 4 and 5. The introduction of weather events and traffic indicators (w/o

weather and w/o ti) improves the effectiveness and efficiency of the model because these indicators

have a significant impact on traffic travel. The ablation experiment in which traffic accident warn-

ing (subtask 1) does not update the main task model parameters through backpropagation proves

that our model framework can improve the experimental effect of specific tasks. To achieve better
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Table 6. Model Complexity Analysis

Models
PeMSD4 PeMSD8

Training Time (s) Training Epoch Training Time (s) Training Epoch

LSTM 78 About 35 73 About 32

GRU 76 About 34 72 About 32

ConvLSTM 52 About 30 49 About 28

SDAE 101 About 39 98 About 39

SDCAE 83 About 39 98 About 39

STGCN 85 About 41 81 About 40

DSTGCN 81 About 46 79 About 43

TAP 79 About 38 75 About 33

TAP* 100 About 38 89 About 33

results in accident classification, we used a layer of CNN to better model time series features (w/o

cnn). In addition, we also conduct ablation experiments on the training strategy of the multi-task

model and back-propagate the accident classification to update the model parameters (sub2 bp) of

the main task (ST-VGAE). The increase of the model parameters in a single training reduces the

efficiency of the model.

In summary, weather events and traffic indicators are essential to the performance of TAP.

CNN helps accident classification improve model performance. The multi-task training strategy

improves the efficiency of the model during training.

5.3 Traffic Accident Profiling

Considering the usability of the model, we analyzed the cost time of each epoch and training

epochs of each deep learning model. The experiment was conducted on an Ubuntu machine

equipped with 4 Inter(R) Xeon(R) Sliver 4110 CPU @2.10GHz with 8 physical cores, and the GPU

is NVIDIA Quadro M4000 equipped with 8G of memory. Machine learning methods have fewer pa-

rameters and shorter training time, thus we not compare them. The comparison results are shown

in Table 6. Firstly, ConvLSTM combines CNN and LSTM has the shortest training time. Secondly,

SDAE learns the hidden embedding of features by optimizing multiple stacked denoising autoen-

coders with the longest training time and epoch, while SDCAE uses CNN instead of full connection

to improve the computational efficiency of the model. Finally, our TAP model uses ST-VGAE to

embed spatio-temporal traffic data to reduce the dimensionality of the traffic data and then uses

a multi-task scheme to generate traffic accident profiling, so the model complexity is better than

STGCN and DSTGCN. TAP* optimizes the effect of the model through normalizing flows, but

it also increases the complexity of the model. In practical applications, we deploy the main task

model in the cloud, and offload the subtasks that generate profiling to RSU or BS. In this way, we

can reduce the calculation time of the model, so that the profiling information is transmitted to

the driver and management department more quickly.

We select real data and generate accident profiling through our model. Figure 11 shows our

profiling information. We assume that the BS has strong storage and computing capabilities, and

ignores the delay in message propagation. In the traffic accident profiling, the intensity of the color

indicates the level of accidents in the area, and the risk is the probability of accidents. We found

that the probability of an accident and the level of the accident are not linearly related, because the
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Fig. 11. The traffic accident profiling.

level of the accident is often related to external factors. We currently do not have more accident-

related datasets, so we cannot improve our ability to predict accident levels.

6 CONCLUSION

Traffic accident prediction is very important and challenging. In this article, we propose a multi-

task spatio-temporal graph representation learning framework, which embeds the traffic state

through the spatio-temporal graph convolutional encoder and then uses a multi-task scheme to

generate traffic accident profiling. In addition, we propose an application framework based on edge

computing to reduce model calculation time by offloading calculations to edge nodes.

Although the model proposed in this article has a good effect on traffic accident profiling, there

are still many shortcomings, and there are many aspects that need to be improved. On one hand,

we can add traffic-related data such as points of interest and accident-prone points to improve the

performance of accident classification. On the other hand, we can mine and analyze accident data

on the constructed accident profile. These improvements will be studied in future work.
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